
Implementation of Elliptic Curve Arithmetic

Operations for Prime Field and Binary Field

using java BigInteger Class

Tun Myat Aung

University of Computer Studies, Yangon

Myanmar

Ni Ni Hla
University of Computer Studies, Yangon

Myanmar

Abstract—The security of elliptic curve cryptosystems depends on

the difficulty of solving the Elliptic Curve Discrete Log Problem

(ECDLP). Elliptic curves with large group order are used for

elliptic curve cryptosystems not to solve ECDLP. We implement

elliptic curve arithmetic operations by using java BigInteger class

to study and analyze any elliptic curve cryptographic protocol

under large integer for prime field and binary field.

Keywords— Implementation; Elliptic Curve Arithmetic Operations;

Java Biginteger Class

I. INTRODUCTION

Elliptic Curve Arithmetic was applied on cryptography

known as of Elliptic Curve Cryptography (ECC) was

discovered in 1985 by Victor Miller (IBM) and Neil Koblitz

(University of Washington) as an alternative mechanism for

implementing public-key cryptography (PKC). ECC is a

public key cryptography. In public key cryptography each user

or the device taking part in the communication generally have

a pair of keys, a public key and a private key, and a set of

operations associated with the keys to do the cryptographic

operations. Only the particular user knows the private key

whereas the public key is distributed to all users taking part in

the communication. Some public key algorithm may require a

set of predefined constants to be known by all the devices

taking part in the communication. “Domain parameters” in

ECC is an example of such constants. Public key

cryptography, unlike private key cryptography, does not

require any shared secret between the communicating parties

but it is much slower than the private key cryptography.

ECC can be used for providing the following security

services:

o confidentiality,

o authentication,

o data integrity,

o non-repudiation,

o authenticated key exchange.

The recent progress in factorization and parallel processing

leads to the need of larger and larger keys for public-key

cryptosystems. But, the growth of keys length will do these

cryptosystems slower than before. The use of ECC allows the

increasing of security. In the same time, ECC decreases the

overloading. ECC security consists in the difficulty to

calculate logarithms in discrete fields (discrete logarithms

problem): being given A (an element from a finite field) and

𝐴𝑥, it is practically impossible to calculate x when A is big

enough. Actually, there are several cryptosystems which are

based on discrete logarithms problem in multiplicative group

𝑍𝑝
∗. But these cryptosystems can be also defined in any other

finite group, as the group of points of an elliptic curve.

The elliptic curves are suitable in applications where:

o the computing power is limited (intelligent cards,

wireless devices, PC boards);

o memory size on integrated circuit is limited;

o a great speed of computing is necessary;

o digital signing and its verification are used intensively;

o signed messages have to be transmitted or memorized;

o digital bandwidth is limited (mobile communications,

certain computer networks).

From the advantages of ECC usage, there can be

mentioned:

o increased security: cryptographic resistance per bit is

much greater than those of any public-key

cryptosystem known at present time;

o substantial economies in calculus and memory needs in

comparison with other cryptosystems;

o great encryption and signing speed both in software and

hardware implementation;

o ECC are ideal for small size hardware implementations

(as intelligent cards);

o encryption and signing can be done in separate stages.

The intense research done on public-key cryptosystems,

based on elliptic curves, demonstrated that ECC are suitable

for the vast majority of existing applications. An ECC with

160-bit key offers a security level equivalent with that offered

by a cryptosystem based on a 1024-bit Zp field. Because of

this, ECC provide a feasible method of implementation for a

high level security system on a PC card, on an intelligent card

or on a mobile communications device.

The purpose of this paper is to provide a detailed

implementation for elliptic curve arithmetic operations over

prime field and binary field under large integers. This work

supports to implement, analyze and study any elliptic curve

cryptosystems over prime field and binary field under large

integers. The organization of this paper is as follows. The

section 2 includes finite field arithmetic operations over prime

field and binary field and their properties. In section 3, we

describe in details elliptic curve arithmetic operations over

prime field and binary field and their geometric properties.

The section 4 illustrates the implementation of elliptic curve

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

454

arithmetic operations and their experimental results. Finally,

we conclude this paper by discussion on performance results

in section 5.

II. FINITE FIELD ARITHMETIC

A finite field is a field containing a finite number of
elements. Fields are abstractions of familiar number systems
(such as the rational numbers Q, the real numbers R, and the
complex numbers C) and their essential properties. They
consist of a set F together with two operations, addition
(denoted by +) and multiplication (denoted by ·), that satisfy
the usual arithmetic properties:

o (F,+) is an abelian group with (additive) identity
denoted by 0.

o (F\{0}, ·) is an abelian group with (multiplicative)
identity denoted by 1.

o The distributive law holds: (a+b) · c = (a · c) + (b · c)
for all a, b, c ∈ F.

If the set F is finite, then the field is said to be finite. Galois
showed that for a field to be finite, the number of elements
should be pm , where p is a prime number called the
characteristic of F and m is a positive integer. The finite fields
are usually called Galois fields and also denoted as GF(pm). If
m = 1, then GF is called a prime field. If m ≥ 2, then F is called
an extension field. The order of a finite field is the number of
elements in the field. Any two fields are said to be isomorphic
if their orders are the same [4].

A. Field Operations

A field F is equipped with two operations, addition and
multiplication. Subtraction of field elements is defined in
terms of addition: for a,b ∈ F, a −b = a +(−b) where −b is the
unique element in F such that b+(−b) = 0 (−b is called the
negative or additive inverse of b). Similarly, division of field
elements is defined in terms of multiplication: for a, b ∈ F
with b = 0, a/b = a · b−1 where b−1 is the unique element in F
such that b · b−1 = 1. (b−1 is called the multiplicative inverse of
b.)

B. Prime Field

Let p be a prime number. The integers modulo p,
consisting of the integers {0,1,2, . . ., p −1} with addition and
multiplication performed modulo p, is a finite field of order p.
We shall denote this field by GF(p) and call p the modulus of
GF(p). For any integer a, a mod p shall denote the unique
integer remainder r, 0 ≤r ≤ p−1, obtained upon dividing a by
p; this operation is called reduction modulo p [1].

Example (1). (prime field GF(29)) The elements of GF(29) are {0,1,2,
. . .,28}. The following are some examples of arithmetic operations in
GF(29).

(a). Addition: 17+20 = 8 since 37 mod 29 = 8.
(b). Subtraction: 17−20 = 26 since −3 mod 29 = 26.
(c). Multiplication: 17 · 20 = 21 since 340 mod 29 = 21.
(d). Inversion: 17−1 = 12 since 17 · 12 mod 29 = 1.

C. Binary Field

Finite fields of order 2m are called binary fields or
characteristic-two finite fields. One way to construct GF(2m) is
to use a polynomial basis representation. Here, the elements of
GF(2m) are the binary polynomials (polynomials whose
coefficients are in the field GF(2) = {0,1}) of degree at most m
−1:

𝐺𝐹(2𝑚) = 𝑎𝑚−1𝑥𝑚−1 + 𝑎𝑚−2𝑥𝑚−2 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 +
𝑎0: 𝑎𝑖 ∈ {0,1}.

An irreducible binary polynomial f (x) of degree m is
chosen. Irreducibility of f(x) means that f(x) cannot be factored
as a product of binary polynomials each of degree less than m.
Addition of field elements is the usual addition of
polynomials, with coefficient arithmetic performed modulo 2.
Multiplication of field elements is performed modulo the
reduction polynomial f(x). For any binary polynomial a(x),
a(x) mod f(x) shall denote the unique remainder polynomial
r(x) of degree less than m obtained upon long division of a(x)
by f(x); this operation is called reduction modulo f(x) [1].

Example (2). (binary field GF(24)) The elements of GF(24) are the 16
binary polynomials of degree at most 3:

0 𝑥2 𝑥3 𝑥3 + 𝑥2

1 𝑥2 + 1 𝑥3 + 1 𝑥3 + 𝑥2 + 1

𝑥 𝑥2 + 𝑥 𝑥3 + 𝑥 𝑥3 + 𝑥2 + 𝑥

𝑥 + 1 𝑥2 + 𝑥 + 1 𝑥3 + 𝑥 + 1 𝑥3 + 𝑥2 + 𝑥 + 1

The following are some examples of arithmetic operations in
GF(24) with reduction Polynomial 𝑓(𝑥) = 𝑥4 + 𝑥 + 1.

(a). Addition: (𝑥3 + 𝑥2 + 1) + (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥.
(b). Subtraction: (𝑥3 + 𝑥2 + 1) − (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥.
(c). Multiplication: (𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥2 + 1 since

(𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥5 + 𝑥 + 1 and
(𝑥5 + 𝑥 + 1) 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) = 𝑥2 + 1.

(d). Inversion: (𝑥3 + 𝑥2 + 1)−1 = 𝑥2 since
(𝑥3 + 𝑥2 + 1). 𝑥2 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) = 1.

III. ELLIPTIC CURVE ARITHMETIC

A. Elliptic Curves over Prime Field -GF(p)

The elliptic curve over finite field E(GF) is a cubic curve
defined by the general Weierstrass equation: 𝑦2 + 𝑎1𝑥𝑦 +
𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6 over GF where 𝑎𝑖 ∈ 𝐺𝐹 and GF
is a finte field. The following elliptic curves are adopted from
the general Weierstrass equation. The elliptic curve E(GF(p))
over prime field GF(p) is defined by the equation [1]:

 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

where 𝑝 > 3 is a prime and 𝑎, 𝑏 ∈ 𝐺𝐹(𝑝) satisfy that the
discriminant 4𝑎3 + 27𝑏2 ≠ 0 (a1 = a2 = a3 = 0; a4 = a and a6
= b corresponding to the general Weierstrass equation).

1) Points on E(GF(p))
The elliptic curve E(GF(p)) consists of a set of points {𝑃 =

(𝑥, 𝑦)| 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐺𝐹(𝑝)} together with a
point at infinity defined as O. Every point on the curve has its
inverse. The inverse of a point (x, y) on E(GF(p)) is (x, -y).
The number of points on the curve, including a point at
infinity, is called its order #E. The pseudocode for finding the
points on the elliptic curve E(GF(p)) is shown in Algorithm
(1).

Algorithm (1). Pseudocode for finding the points on the elliptic curve

E(GF(p))

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

455

Input: a, b, p

Output: 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖)

Begin

x = 0;

while(x < p){

𝑤 = (𝑥3 + 𝑎𝑥 + 𝑏)𝑚𝑜𝑑 𝑝.

If(w is perfect square in 𝑍𝑝) output (𝑥, √𝑤) (𝑥, −√𝑤)

x = x + 1.

}

End

Example (3). Let p = 13 and consider the elliptic curve 𝐸: 𝑦2 = 𝑥3 +
5𝑥 + 4 defined over GF(p) where a = 5 and b = 4. Note that 4𝑎3 +
27𝑏2 = 500 + 432 = 932 𝑚𝑜𝑑 13 = 9, so E is indeed an elliptic

curve. The points on E(GF(p)) and its graph are shown in Figure (1).

The order of the elliptic curve 𝐸: 𝑦2 = 𝑥3 + 5𝑥 + 4 over GF(13) is

17.

(0, 2) (0, 11)

(1, 6) (1, 7)

(2, 3) (2, 10)

(4, 6) (4, 7)

(6, 4) (6, 9)

(8, 6) (8, 7)

(10, 1) (10, 12)

(11, 5) (11, 8)

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8 9 10 11 12
x

y O

Points Graph

Figure (1). Points on 𝐸: 𝑦2 = 𝑥3 + 5𝑥 + 4

2) Arithmetic Operations on E(GF(p))

There is a rule, called the chord-and-tangent rule, for
adding two points on an elliptic curve E(GF(p)) to give a third
elliptic curve point. Together with this addition operation, the
set of points E(GF(p)) forms a group with O serving as its
identity. It is this group that is used in the construction of
elliptic curve cryptosystems. The addition rule is best
explained geometrically. Let 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) be
two distinct points on an elliptic curve E. Then the sum of P
and Q, denoted 𝑅 = (𝑥3, 𝑦3), is defined as follows. First draw
the line through P and Q; this line intersects the elliptic curve
in a third point. Then R is the reflection of this point in the x-
axis. This is depicted in Figure (2.a). The elliptic curve in the
figure consists of two parts, the ellipse-like figure and the
infinite curve. If 𝑃 = (𝑥1, 𝑦1), then the double of P, denoted
𝑅 = (𝑥3, 𝑦3), is defined as follows. First draw the tangent line
to the elliptic curve at P. This line intersects the elliptic curve
in a second point. Then R is the reflection of this point in the
x-axis. This is depicted in Figure (2.b).

x

y

P

Q

-R

R

x

y

P

-R

R
Fig (a). Addition.

(R = P + Q)

Fig (b). Doubling.

(R = P + P)
Figure (2). Geometric Description

The following algebraic formula[1] for the sum of two points
and the double of a point can now be derived from the
geometric description.
(a). P + O = O + P = P for all 𝑃 ∈ 𝐸(𝐺𝐹(𝑝)).

(b). If 𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐺𝐹(𝑝)),
then (𝑥, 𝑦) + (𝑥, −𝑦) = 𝑂.
The point (x, -y) is denoted by (-P), and is called the
inverse of P; observe that –P is indeed
a point on the curve.

(c). (Point addition). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(𝑝)) and 𝑄 =
(𝑥2, 𝑦2) ∈ 𝐸(𝐺𝐹(𝑝)), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 =
(𝑥3, 𝑦3), where
 𝑥3 = 𝜆2 − 𝑥1 − 𝑥2 and 𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1. In this
case, 𝜆 = (𝑦2 − 𝑦1) (𝑥2 − 𝑥1)⁄ .

(d). (Point doubling). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(𝑝)), where
𝑃 ≠ −𝑃. Then 2𝑃 = (𝑥3, 𝑦3), where 𝑥3 = 𝜆2 − 2𝑥1 and
𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1.
In this case, 𝜆 = (3𝑥1

2 + 𝑎) 2𝑦1⁄ .

Example (4). (elliptic curve addition and doubling) Let’s consider the

elliptic curve defined in Example (3).

a. Addition. Let 𝑃 = (1, 6) and 𝑄 = (4, 6). Then 𝑃 + 𝑄 =
(8, 7).

b. Doubling. Let 𝑃 = (1, 6). Then 2𝑃 = (10, 1).

c. Inverse. Let 𝑃 = (1, 6). Then −𝑃 = (1, 7).

B. Elliptic Curves over Binary Field - GF(2m)

A reduction polynomial 𝑓(𝑥) must be firstly chosen to
construct a binary field GF(2m). The elements generated by the
reduction polynomial are applied to construct an elliptic curve
E(GF(2m)). The elliptic curve E(GF(2m)) over binary field
GF(2m) is defined by the equation [1]:

 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥 + 𝑏

where 𝑎, 𝑏 ∈ 𝐺𝐹(2𝑚) and 𝑏 ≠ 0.

1) Points on E(GF(2m))

The elliptic curve E(GF(2m)) consists of a set of
points:{𝑃 = (𝑥, 𝑦)|𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈
𝐺𝐹(2𝑚)} together with a point at infinity. Every point on the
curve has its inverse. The inverse of a point (x, y) on
E(GF(2m)) is (𝑥, 𝑥 ⨁ 𝑦). The number of points on the curve,
including a point at infinity, is called its order #E. The
pseudocode for finding the points on the elliptic curve
E(GF(2m)) is shown in Algorithm (2).

Algorithm (2). Pseudocode for finding the points on the elliptic curve

E(GF(2m))

Input: a, b, 𝑓(𝑥)

Output: 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖)

Begin

x𝑖 = {0, 1, 𝑔1, … , 𝑔𝑚−2 }

𝑦𝑗 = {0, 1, 𝑔1, … , 𝑔𝑚−2 }

for(i=0; i<2m; i++){

for(j=0; j < 2m ;j++){

𝑤1 = 𝑥𝑖
3 ⊕ 𝑎𝑥𝑖 ⊕ 𝑏.

𝑤2 = 𝑦𝑗
2 ⊕ 𝑥𝑖𝑦𝑗

If(𝑤1 = 𝑤2) output (𝑥𝑖 , 𝑦𝑗) (𝑥𝑖 , 𝑦𝑗 ⨁ 𝑥𝑖)

}

}

End

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

456

Example (5). Let 𝑓(𝑥) = 𝑥4 + 𝑥 + 1 be the reduction polynomial.

Then 16 elements of GF(24) are shown in Table (1).

Table (1). Elements of GF(24)

0000 0 1000 𝑥3

0001 1 1001 𝑥3 + 1

0010 𝑥 1010 𝑥3 + 𝑥

0011 𝑥 + 1 1011 𝑥3 + 𝑥 + 1

0100 𝑥2 1100 𝑥3 + 𝑥2

0101 𝑥2 + 1 1101 𝑥3 + 𝑥2 + 1

0110 𝑥2 + 𝑥 1110 𝑥3 + 𝑥2 + 𝑥

0111 𝑥2 + 𝑥 + 1 1111 𝑥3 + 𝑥2 + 𝑥 + 1

Table (2) shows the power representation of g for elements of GF(24)

generated by the polynomial 𝑓(𝑥) = 𝑥4 + 𝑥 + 1. The element of

𝑔 = 𝑥 = (0010) is a generator of GF(24) because its order is 15

(24 − 1) as the following calculation show.

Table (2). Power representation of elements

𝑔 0010 𝑔5 0110 𝑔9 1010 𝑔13 1101

𝑔2 0100 𝑔6 1100 𝑔10 0111 𝑔14 1001

𝑔3 1000 𝑔7 1011 𝑔11 1110 𝑔15 0001

𝑔4 0011 𝑔8 0101 𝑔12 1111

Using the elliptic curve 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑔𝑥 + 1, with 𝑎 = 𝑔 and

𝑏 = 1, we can find the points on the curve, as shown in Figure (3).

The order of the elliptic curve 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑔𝑥 + 1 over

GF(24) is 16.

(0, 1) O

(1, 𝑔7) (1, 𝑔9)

(𝑔3, 0) (𝑔3, 𝑔3)

(𝑔5, 𝑔12) (𝑔5, 𝑔14)

(𝑔6, 𝑔7) (𝑔6, 𝑔10)

(𝑔9, 𝑔2) (𝑔9, 𝑔11)

(𝑔10, 𝑔2) (𝑔10, 𝑔4)

(𝑔12, 𝑔2) (𝑔12, 𝑔7)

0

1

g

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

0 1 g g2 g3 g4 g5 g6 g7 g8 g9 g10 g11
x

y
O

g12

g13

g14

g15

g12 g13 g14 g15
Points Graph

Figure (3). Points on 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑔𝑥 + 1

2) Arithmetic Operations on E(GF(2m))

As with elliptic curves over GF(2m), there is a rule, called
the chord-and-tangent rule, for adding two points on an
elliptic curve E(GF(2m)) to give a third elliptic curve point.
Together with this addition operation, the set of points
E(GF(2m)) forms a group with O serving as its identity. The
algebraic formula [1] for the sum of two points and the double
of a point are the following.

(a). P + O = O + P = P for all 𝑃 ∈ 𝐸(𝐺𝐹(2𝑚)).

(b). If 𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐺𝐹(2𝑚)),

then (𝑥, 𝑦) + (𝑥, 𝑥 + 𝑦) = 𝑂.

The point (x, x+y) is denoted by (-P), and

is called the inverse of P; observe that –P is indeed a

point on the curve.

(c). (Point addition). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(2𝑚)) and 𝑄 =
(𝑥2, 𝑦2) ∈ 𝐸(𝐺𝐹(2𝑚)), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 =
(𝑥3, 𝑦3), where

 𝑥3 = 𝜆2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎 and

 𝑦3 = 𝜆(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1.

In this case, 𝜆 = (𝑦2 + 𝑦1) (𝑥2 + 𝑥1)⁄ .

(d). (Point doubling). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(2𝑚)), where

𝑃 ≠ −𝑃. Then

2𝑃 = (𝑥3, 𝑦3), where 𝑥3 = 𝜆2 + 𝜆 + 𝑎 and

 𝑦3 = 𝑥1
2 + 𝜆𝑥3 + 𝑥3. In this case, 𝜆 = 𝑥1 + (𝑦1 𝑥1)⁄ .

Example (6). (elliptic curve addition and doubling) Let’s consider the

elliptic curve defined in Example (5).

a. Addition. Let 𝑃 = (𝑔5, 𝑔12) and 𝑄 = (𝑔6, 𝑔7). Then 𝑃 +
𝑄 = (𝑔12, 𝑔7).

b. Doubling. Let 𝑃 = (𝑔5, 𝑔12).

Then 2𝑃 = (1, 𝑔7).

c. Inverse. Let 𝑃 = (𝑔5, 𝑔12).

Then −𝑃 = (𝑔5 + 𝑔14).

C. Elliptic Curve Discrete Logarithm Problem

The security of ECC depends on the difficulty of Elliptic
Curve Discrete Logarithm Problem (ECDLP). Let P and Q be
two points on an elliptic curve such that kP = Q, where k is a
scalar. Given P and Q, it is computationally infeasible to
obtain k, if k is sufficiently large. k is the discrete logarithm of
Q to the base P. Hence the main operation involved in ECC is
point multiplication. i.e. multiplication of a scalar k with any
point P on the curve to obtain another point Q on the curve.

1) Point Multiplication

Scalar multiplication is the computation of the form Q =
k.P where P and Q are the elliptic curve points and k is an
integer. This is achieved by repeated point addition and
doubling operations. To calculate the above, integer k is
represented as 𝑘 = 𝑘𝑛−12𝑛−1 + 𝑘𝑛−22𝑛−2 + ⋯ + 𝑘1 + 𝑘0
where 𝑘𝑛−1 = 1 and 𝑘𝑖 ∈ {0, 1}, 𝑖 = 0, 1, 2, … , 𝑛 − 1. This
method is called binary method [2] which scans the bits of k
either from left-to-right or right-to-left. The Algorithm-3 given
below illustrates the computation of kP using binary method.
It can be used for both elliptic curves over prime field GF(p)
and binary field GF(2m).

Algorthm (3). Binary Method

Input : Binary representation of k and point P

Output : Q = kP

Q=P

For i = n-1 to 0 do

Q = 2Q (Doubling)

If ki = 1 then

Q = Q + P (Addition)

Return Q

The cost of multiplication depends on the length of the
binary representation of k and the number of 1s in this
representation. The number of non-zero digits is called the
Hamming Weight of scalar. In an average, binary method
requires (n-1) doublings and (n-1)/2 additions. For each bit .1.,
we need to perform point doubling and point addition, if the
bit is .0., we need only point doubling operation. So if we
reduce the number of 1s in the scalar representation or
hamming weight, the speed of elliptic curve scalar
multiplication will improve.

2) Order of Points

Let P ∈ E(GF(p)). The order of P is the smallest positive
integer, r, such that rP = O where O is the group identity.
Hasse’s theorem [4] say that

 𝑝 + 1 − 2√𝑝 ≤ 𝑟 ≤ 𝑝 + 1 + 2√𝑝.

3) Attacks on ECDLP

The following algorithms can compute the elliptic curve
discrete logarithm. Attacks on the ECDLP can be divided into
three main categories:

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

457

(a). Algorithms that work in arbitrary groups, such as the
exhaustive search and the Baby-Step Giant-Step
algorithm,

(b). Algorithms that work in arbitrary groups with special
conditions present in the group, like Pollard’s rho method
and Pollard’s lambda method, and

(c). Algorithms that work only in specific groups, such as the
Index Calculus and Pohlig-Hellman method.

The discrete logarithm problem is of fundamental
importance to the area of public key cryptography. Many of
the most commonly used cryptography systems are based on
the assumption that the discrete logarithm is extremely
difficult to compute; the more difficult it is, the more security
it provides a data transfer. One way to increase the difficulty
of the discrete logarithm problem is to base the cryptosystem
on a larger group.

IV. IMPLEMENTATION

The elliptic curve cryptosystems on a small group are
susceptible to the attacks described above. Therefore, we have
to implement the elliptic curve cryptosystems under large
integers to increase the difficulty of the discrete logarithm
problem. At first level, we implement finite field arithmetic
operations using java BigInteger class[6]. For prime fields, we
implement a PrimeField class with methods of arithmetic
operations for addition, subtraction, multiplication,
multiplicative inverse and division of elements in the prime
field GF(p). And, for binary fields, we implement a
BinaryField class with methods of arithmetic operations for
addition, subtraction, multiplication, multiplicative inverse and
division of elements in the binary field GF(2m) with reduction
polynomial p. At second level, we implement elliptic curve
arithmetic operations by using PrimeField class and
BinaryField class. The ECCfp class is implemented by using
methods of PrimeField class for point addition and point
doubling over prime field GF(p). And the ECCf2m class is
implemented by using methods of BinaryField class for point
addition and point doubling over binary field GF(2m). At third
level, we implement point multiplication for both ECCfp and
ECCf2m by using algorithm (3). At fourth level, we will
implement elliptic curve cryptosystems for our future research.
For the implementation logic design of elliptic curve
cryptosystems, the general hierarchy is shown in Figure (4).

BigInteger

GF add/sub GF mul GF div/inv

EC Point Add EC Point Double

EC Point Multiplication

EC Cryptosystems

EC Point Inv

first level

second level

third level

fourth level

Figure (4). General logic design of implementation

We measure the performance of elliptic curve arithmetic
basic operations: point addition and point doubling under
prime field and binary field for comparison of execution time
on the processor Intel Core i5@1.60GHz, 2.30GHz. The
National Institute of Standards and Technology (NIST)
submitted a report to recommend a set of elliptic curves for
federal government use with larger key sizes [5]. We use NIST
recommended elliptic curves for our research. The
experimental results of elliptic curve arithmetic operations are
shown in section (4.1). The performance results are listed in
Table (3).

A. Experimental Results

Prime Field (P-192)

𝐸(𝐺𝐹(𝑝)): 𝑦3 = 𝑥2 + 𝑎𝑥 + 𝑏.
p=6277101735386680763835789423207666416083908700390324961279.

𝑎 = −3.
b=64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1.

The order 𝑟 = 627710173538668076383578942317605

9013767194773182842284081.

Points on the curve

 𝑃 = (𝑥1, 𝑦1).

𝑥1 = 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012.

𝑦1 = 07192b95ffc8da78631011ed6b24cdd573f977a11e794811.

𝑄 = (𝑥2, 𝑦2).

𝑥2 = 5701b8be342fb767752f13a308e2eff016b41fd348ef1ea.

𝑦2 = 77aeacae8fd493a524b9b18509c9a60e7e2a7da86882d82c.

Point Addition

𝑅 = 𝑃 + 𝑄 = (𝑥3, 𝑦3).

𝑥3 = c5675f8265cf98e933db304666558478ca70c5ebba4da630.

𝑦3 = 2c2560e527695bbe883084abf6736e0a7e06b489ba57cb39.

Point Doubling

2𝑃 = (𝑥4, 𝑦4).

𝑥4 = dafebf5828783f2ad35534631588a3f629a70fb16982a888.

𝑦4 = dd6bda0d993da0fa46b27bbc141b868f59331afa5c7e93ab.
Point Multiplication

𝑟. 𝑃 = 𝑂.

Binary Field (K-163)

𝐸(𝐺𝐹(2𝑚)): 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏.

𝑝(𝑡) = 𝑡163 + 𝑡7 + 𝑡6 + 𝑡3 + 1.

𝑎 = 1.

𝑏 = 1.

The order 𝑟 = 5846006549323611672814741753598448348329118574063.

Points on the curve.

𝑃 = (𝑥1, 𝑦1).

𝑥1 = 2fe13c0537bbc11ac aa07d793de4e6d5e5c94eee8.

𝑦1 = 289070fb05d38ff58321f2e800536d538ccdaa3d9.

𝑄 = (𝑥2, 𝑦2).

𝑥2 = 4ec251aba46dc1dd4d6a0d18d25f98deb6e0cba68.

𝑦2 = f35a742feaeb3ec71b751605457513c6f20a82b.

Point Addition

𝑅 = 𝑃 + 𝑄 = (𝑥3, 𝑦3).

𝑥3 = fd5f739b49278be0cc385ab2a0f66a695775312e.

𝑦3 = 44dfc418c0590df2951cbc876ba30dbffd4b945b1.

Point Doubling

2𝑃 = (𝑥4, 𝑦4).

𝑥4 = cb5ca2738fe300aacfb00b42a77b828d8a5c41eb.

𝑦4 = 229c79e9ab85f90acd3d5fa3a696664515efefa6b.
Point Multiplication

𝑟. 𝑃 = 𝑂.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

458

Table (3). The results of performance

EC Arithmetic Operations Prime Field
(ms/100000times)

Binary Field
(ms/100000times)

Addition

Doubling

3770

3521

87548

85244

V. CONCLUSION
The performance of elliptic curve arithmetic basic

operations, point addition and point doubling, under prime
field and binary field, depends on the performance of
equivalent finite field arithmetic operations. As a result of the
performance for finite field arithmetic operations in the paper
[6], it proved that the java BigInteger class is more efficient
for the software implementation of finite field arithmetic
operations in prime field than in binary field. Therefore, the
results of performance in the table (1) more proved that the
java BigInteger class is more efficient for the software
implementation of elliptic curve arithmetic operations in prime
field than in binary field.

REFERENCES
[1]. Behrouz A. Forouzan, Cryptography and Network Security,

McGraw-Hill press, International Edition, 2008.

[2]. Darrel Hankerson, Alfred Menezes, Scott Vanstone. Guide

to Elliptic Curve Cryptography, Springer press, 2004.
[3]. Lawrence C. Washington, Elliptic Curves: Number Theory

and Cryptography, Second Edition, Taylor & Francis

Group, LLC, 2008.
[4]. Rudolf Lidl and Harald Niederreiter, Introduction to Finite

Field Arithmetic and their Applications, Cambridge

University Press, 1986.
[5]. Recommended Elliptic Curves for Federal Government

Use, NIST, 1999.

[6]. Ni Ni Hla, Tun Myat Aung. Implementation of Finite Field
Arithmetic Operations for Large Prime and Binary Fields

Using java BigInteger class, International Journal of

Engineering Research and Technology (IJERT), Volume. 6,
Issue. 08, August - 2017.

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

459

