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Abstract—The security of elliptic curve cryptosystems depends on 

the difficulty of solving the Elliptic Curve Discrete Log Problem 

(ECDLP). Elliptic curves with large group order are used for 

elliptic curve cryptosystems not to solve ECDLP. We implement 

elliptic curve arithmetic operations by using java BigInteger class 

to study and analyze any elliptic curve cryptographic protocol 

under large integer for prime field and binary field. 
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I. INTRODUCTION 

Elliptic Curve Arithmetic was applied on cryptography 

known as of Elliptic Curve Cryptography (ECC) was 

discovered in 1985 by Victor Miller (IBM) and Neil Koblitz 

(University of Washington) as an alternative mechanism for 

implementing public-key cryptography (PKC). ECC is a 

public key cryptography. In public key cryptography each user 

or the device taking part in the communication generally have 

a pair of keys, a public key and a private key, and a set of 

operations associated with the keys to do the cryptographic 

operations. Only the particular user knows the private key 

whereas the public key is distributed to all users taking part in 

the communication. Some public key algorithm may require a 

set of predefined constants to be known by all the devices 

taking part in the communication. “Domain parameters” in 

ECC is an example of such constants. Public key 

cryptography, unlike private key cryptography, does not 

require any shared secret between the communicating parties 

but it is much slower than the private key cryptography.  

ECC can be used for providing the following security 

services: 

o confidentiality, 

o authentication, 

o data integrity, 

o non-repudiation, 

o authenticated key exchange. 

The recent progress in factorization and parallel processing 

leads to the need of larger and larger keys for public-key 

cryptosystems. But, the growth of keys length will do these 

cryptosystems slower than before. The use of ECC allows the 

increasing of security. In the same time, ECC decreases the 

overloading. ECC security consists in the difficulty to 

calculate logarithms in discrete fields (discrete logarithms 

problem): being given A (an element from a finite field) and 

𝐴𝑥, it is practically impossible to calculate x when A is big 

enough. Actually, there are several cryptosystems which are 

based on discrete logarithms problem in multiplicative group 

𝑍𝑝
∗. But these cryptosystems can be also defined in any other 

finite group, as the group of points of an elliptic curve.  

The elliptic curves are suitable in applications where: 

o the computing power is limited (intelligent cards, 

wireless devices, PC boards); 

o memory size on integrated circuit is limited; 

o a great speed of computing is necessary; 

o digital signing and its verification are used intensively; 

o signed messages have to be transmitted or memorized; 

o digital bandwidth is limited (mobile communications, 

certain computer networks). 

From the advantages of ECC usage, there can be 

mentioned: 

o increased security: cryptographic resistance per bit is 

much greater than those of any public-key 

cryptosystem known at present time; 

o substantial economies in calculus and memory needs in 

comparison with other cryptosystems; 

o great encryption and signing speed both in software and 

hardware implementation; 

o ECC are ideal for small size hardware implementations 

(as intelligent cards); 

o encryption and signing can be done in separate stages. 

The intense research done on public-key cryptosystems, 

based on elliptic curves, demonstrated that ECC are suitable 

for the vast majority of existing applications. An ECC with 

160-bit key offers a security level equivalent with that offered 

by a cryptosystem based on a 1024-bit Zp field. Because of 

this, ECC provide a feasible method of implementation for a 

high level security system on a PC card, on an intelligent card 

or on a mobile communications device.  

The purpose of this paper is to provide a detailed 

implementation for elliptic curve arithmetic operations over 

prime field and binary field under large integers. This work 

supports to implement, analyze and study any elliptic curve 

cryptosystems over prime field and binary field under large 

integers. The organization of this paper is as follows. The 

section 2 includes finite field arithmetic operations over prime 

field and binary field and their properties. In section 3, we 

describe in details elliptic curve arithmetic operations over 

prime field and binary field and their geometric properties. 

The section 4 illustrates the implementation of elliptic curve 
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arithmetic operations and their experimental results. Finally, 

we conclude this paper by discussion on performance results 

in section 5.  

II. FINITE FIELD ARITHMETIC 

A finite field is a field containing a finite number of 
elements. Fields are abstractions of familiar number systems 
(such as the rational numbers Q, the real numbers R, and the 
complex numbers C) and their essential properties. They 
consist of a set F together with two operations, addition 
(denoted by +) and multiplication (denoted by ·), that satisfy 
the usual arithmetic properties: 

o (F,+) is an abelian group with (additive) identity 
denoted by 0. 

o (F\{0}, ·) is an abelian group with (multiplicative) 
identity denoted by 1. 

o The distributive law holds: (a+b) · c = (a · c) + (b · c) 
for all a, b, c ∈ F. 

If the set F is finite, then the field is said to be finite. Galois 
showed that for a field to be finite, the number of elements 
should be pm , where p is a prime number called the 
characteristic of F and m is a positive integer. The finite fields 
are usually called Galois fields and also denoted as GF(pm). If 
m = 1, then GF is called a prime field. If m ≥ 2, then F is called 
an extension field. The order of a finite field is the number of 
elements in the field. Any two fields are said to be isomorphic 
if their orders are the same [4].  

A. Field Operations 

A field F is equipped with two operations, addition and 
multiplication. Subtraction of field elements is defined in 
terms of addition: for a,b ∈ F, a −b = a +(−b) where −b is the 
unique element in F such that b+(−b) = 0 (−b is called the 
negative or additive inverse of b). Similarly, division of field 
elements is defined in terms of multiplication: for a, b ∈ F 
with b = 0, a/b = a · b−1 where b−1 is the unique element in F 
such that b · b−1 = 1. (b−1 is called the multiplicative inverse of 
b.) 

B. Prime Field 

Let p be a prime number. The integers modulo p, 
consisting of the integers {0,1,2, . . ., p −1} with addition and 
multiplication performed modulo p, is a finite field of order p. 
We shall denote this field by GF(p) and call p the modulus of 
GF(p). For any integer a, a mod p shall denote the unique 
integer remainder r, 0 ≤r ≤ p−1, obtained upon dividing a by 
p; this operation is called reduction modulo p [1]. 

Example (1). (prime field GF(29)) The elements of GF(29) are {0,1,2, 
. . .,28}. The following are some examples of arithmetic operations in 
GF(29). 

(a). Addition: 17+20 = 8 since 37 mod 29 = 8. 
(b). Subtraction: 17−20 = 26 since −3 mod 29 = 26. 
(c). Multiplication: 17 · 20 = 21 since 340 mod 29 = 21. 
(d). Inversion: 17−1 = 12 since 17 · 12 mod 29 = 1. 

C. Binary Field 

Finite fields of order 2m are called binary fields or 
characteristic-two finite fields. One way to construct GF(2m) is 
to use a polynomial basis representation. Here, the elements of 
GF(2m) are the binary polynomials (polynomials whose 
coefficients are in the field GF(2) = {0,1}) of degree at most m 
−1: 

𝐺𝐹(2𝑚)  = 𝑎𝑚−1𝑥𝑚−1 + 𝑎𝑚−2𝑥𝑚−2 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 +
𝑎0: 𝑎𝑖 ∈ {0,1}. 

An irreducible binary polynomial f (x) of degree m is 
chosen. Irreducibility of f(x) means that f(x) cannot be factored 
as a product of binary polynomials each of degree less than m. 
Addition of field elements is the usual addition of 
polynomials, with coefficient arithmetic performed modulo 2. 
Multiplication of field elements is performed modulo the 
reduction polynomial f(x). For any binary polynomial a(x), 
a(x) mod f(x) shall denote the unique remainder polynomial 
r(x) of degree less than m obtained upon long division of a(x) 
by f(x); this operation is called reduction modulo f(x) [1]. 

Example (2). (binary field GF(24)) The elements of GF(24) are the 16 
binary polynomials of degree at most 3: 

0 𝑥2 𝑥3 𝑥3 + 𝑥2 

1 𝑥2 + 1 𝑥3 + 1 𝑥3 + 𝑥2 + 1 

𝑥 𝑥2 + 𝑥 𝑥3 + 𝑥 𝑥3 + 𝑥2 + 𝑥 

𝑥 + 1 𝑥2 + 𝑥 + 1 𝑥3 + 𝑥 + 1 𝑥3 + 𝑥2 + 𝑥 + 1 

The following are some examples of arithmetic operations in 
GF(24) with reduction Polynomial 𝑓(𝑥) = 𝑥4 + 𝑥 + 1. 

(a). Addition: (𝑥3 + 𝑥2 + 1) + (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥. 
(b). Subtraction: (𝑥3 + 𝑥2 + 1) − (𝑥2 + 𝑥 + 1) = 𝑥3 + 𝑥. 
(c). Multiplication: (𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥2 + 1 since 

(𝑥3 + 𝑥2 + 1). (𝑥2 + 𝑥 + 1) = 𝑥5 + 𝑥 + 1  and 
(𝑥5 + 𝑥 + 1) 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) =  𝑥2 + 1. 

(d). Inversion: (𝑥3 + 𝑥2 + 1)−1 = 𝑥2 since 
(𝑥3 + 𝑥2 + 1). 𝑥2 𝑚𝑜𝑑 (𝑥4 + 𝑥 + 1) = 1. 

III. ELLIPTIC CURVE ARITHMETIC 

A. Elliptic Curves over Prime Field -GF(p) 

The elliptic curve over finite field E(GF) is a cubic curve 
defined by the general Weierstrass equation: 𝑦2 + 𝑎1𝑥𝑦 +
𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6 over GF where 𝑎𝑖 ∈ 𝐺𝐹 and GF 
is a finte field. The following elliptic curves are adopted from 
the general Weierstrass equation. The elliptic curve E(GF(p)) 
over prime field GF(p) is defined by the equation [1]: 

 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏  

where 𝑝 > 3 is a prime and 𝑎, 𝑏 ∈ 𝐺𝐹(𝑝) satisfy that the 
discriminant 4𝑎3 + 27𝑏2 ≠ 0 (a1 = a2 = a3 = 0; a4 = a and a6 
= b corresponding to the general Weierstrass equation).  

1) Points on E(GF(p)) 
The elliptic curve E(GF(p)) consists of a set of points {𝑃 =

(𝑥, 𝑦)| 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈ 𝐺𝐹(𝑝)} together with a 
point at infinity defined as O. Every point on the curve has its 
inverse. The inverse of a point (x, y) on E(GF(p)) is (x, -y). 
The number of points on the curve, including a point at 
infinity, is called its order #E. The pseudocode for finding the 
points on the elliptic curve E(GF(p)) is shown in Algorithm 
(1).  

Algorithm (1). Pseudocode for finding the points on the elliptic curve 

E(GF(p)) 
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Input: a, b, p 

Output: 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖) 

Begin 

x = 0; 

while( x < p ){ 

𝑤 = (𝑥3 + 𝑎𝑥 + 𝑏)𝑚𝑜𝑑 𝑝. 

If(w is perfect square in 𝑍𝑝) output (𝑥, √𝑤) (𝑥, −√𝑤) 

x = x + 1. 

} 

End 

Example (3). Let p = 13 and consider the elliptic curve 𝐸: 𝑦2 = 𝑥3 +
5𝑥 + 4 defined over GF(p) where a = 5 and  b = 4. Note that 4𝑎3 +
27𝑏2 = 500 + 432 = 932 𝑚𝑜𝑑 13 = 9, so E is indeed an elliptic 

curve. The points on E(GF(p)) and its graph are shown in Figure (1). 

The order of the elliptic curve 𝐸: 𝑦2 = 𝑥3 + 5𝑥 + 4 over GF(13) is 

17. 
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Figure (1). Points on 𝐸: 𝑦2 = 𝑥3 + 5𝑥 + 4 

2) Arithmetic Operations on E(GF(p)) 

There is a rule, called the chord-and-tangent rule, for 
adding two points on an elliptic curve E(GF(p)) to give a third 
elliptic curve point. Together with this addition operation, the 
set of points E(GF(p)) forms a group with O serving as its 
identity. It is this group that is used in the construction of 
elliptic curve cryptosystems. The addition rule is best 
explained geometrically. Let 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) be 
two distinct points on an elliptic curve E. Then the sum of P 
and Q, denoted 𝑅 = (𝑥3, 𝑦3), is defined as follows. First draw 
the line through P and Q; this line intersects the elliptic curve 
in a third point. Then R is the reflection of this point in the x-
axis. This is depicted in Figure (2.a). The elliptic curve in the 
figure consists of two parts, the ellipse-like figure and the 
infinite curve. If 𝑃 = (𝑥1, 𝑦1), then the double of  P, denoted 
𝑅 = (𝑥3, 𝑦3), is defined as follows. First draw the tangent line 
to the elliptic curve at P. This line intersects the elliptic curve 
in a second point. Then R is the reflection of this point in the 
x-axis. This is depicted in Figure (2.b). 

x

y

P

Q

-R

R  

x

y

P

-R

R  
Fig (a). Addition. 

(R = P + Q) 

Fig (b). Doubling. 

(R = P + P) 
Figure (2). Geometric Description 

 

The following algebraic formula[1] for the sum of two points 
and the double of a point can now be derived from the 
geometric description. 
(a). P + O = O + P = P for all 𝑃 ∈ 𝐸(𝐺𝐹(𝑝)). 

(b). If 𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐺𝐹(𝑝)),  
then (𝑥, 𝑦) + (𝑥, −𝑦) = 𝑂.  
The point (x, -y) is denoted by (-P), and is called the 
inverse of  P; observe that –P is indeed  
a point on the curve. 

(c). (Point addition). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(𝑝)) and 𝑄 =
(𝑥2, 𝑦2) ∈ 𝐸(𝐺𝐹(𝑝)), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 =
(𝑥3, 𝑦3), where 
 𝑥3 = 𝜆2 − 𝑥1 − 𝑥2 and 𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1. In this 
case, 𝜆 = (𝑦2 − 𝑦1) (𝑥2 − 𝑥1)⁄ . 

(d). (Point doubling). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(𝑝)), where 
𝑃 ≠ −𝑃. Then 2𝑃 = (𝑥3, 𝑦3), where 𝑥3 = 𝜆2 − 2𝑥1 and  
𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1.  
In this case, 𝜆 = (3𝑥1

2 + 𝑎) 2𝑦1⁄ .  

Example (4). (elliptic curve addition and doubling) Let’s consider the 

elliptic curve defined in Example (3). 

a. Addition. Let 𝑃 = (1, 6) and 𝑄 = (4, 6). Then 𝑃 + 𝑄 =
(8, 7). 

b. Doubling. Let 𝑃 = (1, 6). Then 2𝑃 = (10, 1). 

c. Inverse. Let 𝑃 = (1, 6). Then −𝑃 = (1, 7). 

B. Elliptic Curves over Binary Field - GF(2m) 

A reduction polynomial 𝑓(𝑥) must be firstly chosen to 
construct a binary field GF(2m). The elements generated by the 
reduction polynomial are applied to construct an elliptic curve 
E(GF(2m)). The elliptic curve E(GF(2m)) over binary field 
GF(2m) is defined by the equation [1]: 

  𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥 + 𝑏  

where 𝑎, 𝑏 ∈ 𝐺𝐹(2𝑚) and 𝑏 ≠ 0.  

1) Points on E(GF(2m)) 

The elliptic curve E(GF(2m)) consists of a set of 
points:{𝑃 = (𝑥, 𝑦)|𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑥, 𝑦, 𝑎, 𝑏 ∈
𝐺𝐹(2𝑚)} together with a point at infinity. Every point on the 
curve has its inverse. The inverse of a point (x, y) on 
E(GF(2m)) is (𝑥, 𝑥 ⨁ 𝑦). The number of points on the curve, 
including a point at infinity, is called its order #E. The 
pseudocode for finding the points on the elliptic curve 
E(GF(2m)) is shown in Algorithm (2).  

Algorithm (2). Pseudocode for finding the points on the elliptic curve 

E(GF(2m)) 

Input: a, b, 𝑓(𝑥)   

Output: 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖) 

Begin 

x𝑖 = {0, 1, 𝑔1, … , 𝑔𝑚−2 } 

𝑦𝑗 = {0, 1, 𝑔1, … , 𝑔𝑚−2 } 

 

for(i=0; i<2m; i++){ 

for(j=0; j < 2m ;j++){ 

 

𝑤1 = 𝑥𝑖
3 ⊕ 𝑎𝑥𝑖 ⊕ 𝑏. 

𝑤2 = 𝑦𝑗
2 ⊕ 𝑥𝑖𝑦𝑗  

If(𝑤1 = 𝑤2) output (𝑥𝑖 , 𝑦𝑗) (𝑥𝑖 , 𝑦𝑗  ⨁ 𝑥𝑖) 

} 

} 

End 
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Example (5). Let 𝑓(𝑥) = 𝑥4 + 𝑥 + 1 be the reduction polynomial. 

Then 16 elements of GF(24) are shown in Table (1).  

Table (1). Elements of GF(24) 

0000 0 1000 𝑥3 

0001 1 1001 𝑥3 + 1 

0010 𝑥 1010 𝑥3 + 𝑥 

0011 𝑥 + 1 1011 𝑥3 + 𝑥 + 1 

0100 𝑥2 1100 𝑥3 + 𝑥2 

0101 𝑥2 + 1 1101 𝑥3 + 𝑥2 + 1 

0110 𝑥2 + 𝑥 1110 𝑥3 + 𝑥2 + 𝑥 

0111 𝑥2 + 𝑥 + 1 1111 𝑥3 + 𝑥2 + 𝑥 + 1 

 

Table (2) shows the power representation of g for elements of GF(24) 

generated by the polynomial  𝑓(𝑥) = 𝑥4 + 𝑥 + 1. The element of  

𝑔 = 𝑥 = (0010) is a generator of GF(24) because its order is 15 

(24 − 1) as the following calculation show. 

Table (2). Power representation of elements 

𝑔 0010 𝑔5 0110 𝑔9 1010 𝑔13 1101 

𝑔2 0100 𝑔6 1100 𝑔10 0111 𝑔14 1001 

𝑔3 1000 𝑔7 1011 𝑔11 1110 𝑔15 0001 

𝑔4 0011 𝑔8 0101 𝑔12 1111 

 
Using the elliptic curve 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑔𝑥 + 1, with 𝑎 = 𝑔 and 

𝑏 = 1, we can find the points on the curve, as shown in Figure (3). 

The order of the elliptic curve 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑔𝑥 + 1 over 

GF(24) is 16. 
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Figure (3). Points on 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑔𝑥 + 1 

2) Arithmetic Operations on E(GF(2m)) 

As with elliptic curves over GF(2m), there is a rule, called 
the chord-and-tangent rule, for adding two points on an 
elliptic curve E(GF(2m)) to give a third elliptic curve point. 
Together with this addition operation, the set of points 
E(GF(2m)) forms a group with O serving as its identity. The 
algebraic formula [1] for the sum of two points and the double 
of a point are the following. 

(a). P + O = O + P = P for all 𝑃 ∈ 𝐸(𝐺𝐹(2𝑚)). 

(b). If 𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐺𝐹(2𝑚)),  

then (𝑥, 𝑦) + (𝑥, 𝑥 + 𝑦) = 𝑂.  

The point (x, x+y) is denoted by (-P), and 

is called the inverse of  P; observe that –P is indeed a 

point on the curve. 

(c). (Point addition). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(2𝑚)) and 𝑄 =
(𝑥2, 𝑦2) ∈ 𝐸(𝐺𝐹(2𝑚)), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 =
(𝑥3, 𝑦3), where 

 𝑥3 = 𝜆2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎 and 

 𝑦3 = 𝜆(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1.  

In this case, 𝜆 = (𝑦2 + 𝑦1) (𝑥2 + 𝑥1)⁄ . 

(d). (Point doubling). Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(2𝑚)), where 

𝑃 ≠ −𝑃. Then  

2𝑃 = (𝑥3, 𝑦3), where 𝑥3 = 𝜆2 + 𝜆 + 𝑎 and  

 𝑦3 = 𝑥1
2 + 𝜆𝑥3 + 𝑥3. In this case, 𝜆 = 𝑥1 + (𝑦1 𝑥1)⁄ .  

Example (6). (elliptic curve addition and doubling) Let’s consider the 

elliptic curve defined in Example (5). 

a. Addition. Let 𝑃 = (𝑔5, 𝑔12) and 𝑄 = (𝑔6, 𝑔7). Then 𝑃 +
𝑄 = (𝑔12, 𝑔7). 

b. Doubling. Let 𝑃 = (𝑔5, 𝑔12).  

Then 2𝑃 = (1, 𝑔7). 

c. Inverse. Let 𝑃 = (𝑔5, 𝑔12).  

Then −𝑃 = (𝑔5 + 𝑔14). 

C.  Elliptic Curve Discrete Logarithm Problem 

The security of ECC depends on the difficulty of  Elliptic 
Curve Discrete Logarithm Problem (ECDLP). Let P and Q be 
two points on an elliptic curve such that kP = Q, where k is a 
scalar. Given P and Q, it is computationally infeasible to 
obtain k, if k is sufficiently large. k is the discrete logarithm of 
Q to the base P. Hence the main operation involved in ECC is 
point multiplication. i.e. multiplication of a scalar k with any 
point P on the curve to obtain another point Q on the curve. 

1)  Point Multiplication 

Scalar multiplication is the computation of the form Q = 
k.P where P and Q are the elliptic curve points and k is an 
integer. This is achieved by repeated point addition and 
doubling operations. To calculate the above, integer k is 
represented as 𝑘 = 𝑘𝑛−12𝑛−1 + 𝑘𝑛−22𝑛−2 + ⋯ + 𝑘1 + 𝑘0 
where 𝑘𝑛−1 = 1 and 𝑘𝑖 ∈ {0, 1}, 𝑖 = 0, 1, 2, … , 𝑛 − 1. This 
method is called binary method [2] which scans the bits of k 
either from left-to-right or right-to-left. The Algorithm-3 given 
below illustrates the computation of kP using binary method. 
It can be used for both elliptic curves over prime field GF(p) 
and binary field GF(2m). 

Algorthm (3). Binary Method 

Input : Binary representation of k and point P 

Output : Q = kP 

Q=P 

For i = n-1 to 0 do 

Q = 2Q (Doubling) 

If ki = 1 then 

Q = Q + P (Addition) 

Return Q 

The cost of multiplication depends on the length of the 
binary representation of k and the number of 1s in this 
representation. The number of non-zero digits is called the 
Hamming Weight of scalar. In an average, binary method 
requires (n-1) doublings and (n-1)/2 additions. For each bit .1., 
we need to perform point doubling and point addition, if the 
bit is .0., we need only point doubling operation. So if we 
reduce the number of 1s in the scalar representation or 
hamming weight, the speed of elliptic curve scalar 
multiplication will improve. 

2) Order of Points 

Let P ∈ E(GF(p)). The order of P is the smallest positive 
integer, r, such that rP = O where O is the group identity. 
Hasse’s theorem [4] say that 

 𝑝 + 1 − 2√𝑝  ≤ 𝑟 ≤ 𝑝 + 1 + 2√𝑝.  

3) Attacks on ECDLP 

The following algorithms can compute the elliptic curve 
discrete logarithm. Attacks on the ECDLP can be divided into 
three main categories: 
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(a). Algorithms that work in arbitrary groups, such as the 
exhaustive search and the Baby-Step Giant-Step 
algorithm, 

(b). Algorithms that work in arbitrary groups with special 
conditions present in the group, like Pollard’s rho method 
and Pollard’s lambda method, and 

(c). Algorithms that work only in specific groups, such as the 
Index Calculus and Pohlig-Hellman method. 

The discrete logarithm problem is of fundamental 
importance to the area of public key cryptography. Many of 
the most commonly used cryptography systems are based on 
the assumption that the discrete logarithm is extremely 
difficult to compute; the more difficult it is, the more security 
it provides a data transfer. One way to increase the difficulty 
of the discrete logarithm problem is to base the cryptosystem 
on a larger group. 

IV. IMPLEMENTATION 

The elliptic curve cryptosystems on a small group are 
susceptible to the attacks described above. Therefore, we have 
to implement the elliptic curve cryptosystems under large 
integers to increase the difficulty of the discrete logarithm 
problem. At first level, we implement finite field arithmetic 
operations using java BigInteger class[6]. For prime fields, we 
implement a PrimeField class with methods of arithmetic 
operations for addition, subtraction, multiplication, 
multiplicative inverse and division of elements in the prime 
field GF(p). And, for binary fields, we implement a 
BinaryField class with methods of arithmetic operations for 
addition, subtraction, multiplication, multiplicative inverse and 
division of elements in the binary field GF(2m) with reduction 
polynomial p. At second level, we implement elliptic curve 
arithmetic operations by using PrimeField class and 
BinaryField class. The ECCfp class is implemented by using 
methods of PrimeField class for point addition and point 
doubling over prime field GF(p). And the ECCf2m class is 
implemented by using methods of BinaryField class for point 
addition and point doubling over binary field GF(2m). At third 
level, we implement point multiplication for both ECCfp and 
ECCf2m by using algorithm (3). At fourth level, we will 
implement elliptic curve cryptosystems for our future research. 
For the implementation logic design of elliptic curve 
cryptosystems, the general hierarchy is shown in Figure (4). 

BigInteger

GF add/sub GF mul GF div/inv

EC Point Add EC Point Double

EC Point Multiplication

EC Cryptosystems

EC Point Inv

first level

second level

third level

fourth level

 

Figure (4). General logic design of implementation 

 

We measure the performance of elliptic curve arithmetic 
basic operations: point addition and point doubling under 
prime field and binary field for comparison of execution time 
on the processor Intel Core i5@1.60GHz, 2.30GHz. The 
National Institute of Standards and Technology (NIST) 
submitted a report to recommend a set of elliptic curves for 
federal government use with larger key sizes [5]. We use NIST 
recommended elliptic curves for our research. The 
experimental results of elliptic curve arithmetic operations are 
shown in section (4.1). The performance results are listed in 
Table (3).  

A. Experimental Results 

Prime Field (P-192) 

𝐸(𝐺𝐹(𝑝)): 𝑦3 = 𝑥2 + 𝑎𝑥 + 𝑏. 
p=6277101735386680763835789423207666416083908700390324961279. 

𝑎 = −3. 
b=64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1. 

The order 𝑟 = 627710173538668076383578942317605 

9013767194773182842284081.  
 

Points on the curve 

 𝑃 = (𝑥1, 𝑦1). 

𝑥1 = 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012.  

𝑦1 = 07192b95ffc8da78631011ed6b24cdd573f977a11e794811. 
 

𝑄 = (𝑥2, 𝑦2). 

𝑥2 = 5701b8be342fb767752f13a308e2eff016b41fd348ef1ea.  

𝑦2 = 77aeacae8fd493a524b9b18509c9a60e7e2a7da86882d82c. 
 

Point Addition 

𝑅 = 𝑃 + 𝑄 = (𝑥3, 𝑦3). 

𝑥3 = c5675f8265cf98e933db304666558478ca70c5ebba4da630.  

𝑦3 = 2c2560e527695bbe883084abf6736e0a7e06b489ba57cb39. 

 

Point Doubling 

2𝑃 = (𝑥4, 𝑦4). 

𝑥4 = dafebf5828783f2ad35534631588a3f629a70fb16982a888. 

𝑦4 = dd6bda0d993da0fa46b27bbc141b868f59331afa5c7e93ab. 
Point Multiplication 

𝑟. 𝑃 = 𝑂. 

 
Binary Field (K-163) 

𝐸(𝐺𝐹(2𝑚)): 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏. 

𝑝(𝑡) = 𝑡163 + 𝑡7 + 𝑡6 + 𝑡3 + 1. 

𝑎 = 1. 

𝑏 = 1. 

The order 𝑟 = 5846006549323611672814741753598448348329118574063. 
 

Points on the curve. 

𝑃 = (𝑥1, 𝑦1). 

𝑥1  = 2fe13c0537bbc11ac aa07d793de4e6d5e5c94eee8. 

𝑦1  = 289070fb05d38ff58321f2e800536d538ccdaa3d9. 
 

𝑄 = (𝑥2, 𝑦2). 

𝑥2 = 4ec251aba46dc1dd4d6a0d18d25f98deb6e0cba68. 

𝑦2 = f35a742feaeb3ec71b751605457513c6f20a82b. 
 
Point Addition 

𝑅 = 𝑃 + 𝑄 = (𝑥3, 𝑦3). 

𝑥3 = fd5f739b49278be0cc385ab2a0f66a695775312e.  

𝑦3 = 44dfc418c0590df2951cbc876ba30dbffd4b945b1. 

 
Point Doubling 

2𝑃 = (𝑥4, 𝑦4). 

𝑥4 = cb5ca2738fe300aacfb00b42a77b828d8a5c41eb. 

𝑦4 = 229c79e9ab85f90acd3d5fa3a696664515efefa6b. 
Point Multiplication 

𝑟. 𝑃 = 𝑂. 

 

 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV6IS080211
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

www.ijert.org

Vol. 6 Issue 08, August - 2017

458



Table (3). The results of performance 

EC Arithmetic Operations Prime Field 
(ms/100000times) 

Binary Field 
(ms/100000times) 

Addition 

Doubling 

3770 

3521 

87548 

85244 

V. CONCLUSION 
The performance of elliptic curve arithmetic basic 

operations, point addition and point doubling, under prime 
field and binary field, depends on the performance of 
equivalent finite field arithmetic operations. As a result of the 
performance for finite field arithmetic operations in the paper 
[6], it proved that the java BigInteger class is more efficient 
for the software implementation of finite field arithmetic 
operations in prime field than in binary field. Therefore, the 
results of performance in the table (1) more proved that the 
java BigInteger class is more efficient for the software 
implementation of elliptic curve arithmetic operations in prime 
field than in binary field. 
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